

CRITICAL INFRASTRUCTURE and INDUSTRIAL AUTOMATION SECURITY

Preventing the Kill Chain in Industrial Control Systems (ICS) / SCADA

Mati Epstein
Global sales manager
Critical Infrastructure and ICS

Industrial Control Systems (ICS)/SCADA are All Around Us

... and we rely on it every day for our basic functions and needs.

Facts and Reality

Dec 2014

German Steel Mill was hacked by Spear Phishing – Massive damage to the factory

Dec 2015

Blackout across western Ukraine due to BlackEnergy Spear Phishing malware attack (And again on January 19th)

March 2016

Hackers breached a water utility's control system and changed the levels of chemicals being used to treat tap water (Kemuri Water Company)

Most recent news

June, 2017

NotPetya Ransomware hits Ukraine's power distribution company, Mearsk and other's OT infrastructure

July 16th, 2017

Energy sector hacking campaign targeted more than 15 U.S. firms

(Cyberscoop)

December, 2017

Triton Malware - Affecting S.E. Triconex Safety Controllers, which are used widely in critical infrastructure. Threat actors deployed malware capable of manipulating emergency shutdown systems

(Schneider Electric)

US ICS-CERT report: (Jan-18)

FY 2017 Most Pre 3rd year in a row nesses

Area of Weakness	Rank	Risk				
Paundan Protection	1	Undetected unauthorized activity in critical syste Most Attacked Sectors				
Boundary Protection		Weaker boundaries between ICS and enterprise networks 2016				
Identification and Authentication		Lack of accountability and traceability for user actions if an account is compromised				
(Organizational Users)	2	Increased difficulty in securing accounts as personnel leaver especially sensitive for users with administrator access.				
Allocation of Resources	3	No backup or alternate personnel to fill position if r Critical				
Allocation of Resources		Loss of critical knowledge of control systems Manufacturing 22%				
		Unauthorized physical access to field equipment Transportation Systems 5%				
		opportunity to: Communication Government Facilities 6%				
Physical Access Control	4	Maliciously modify, delete, or copy device progression 21% Water Water				
Thysical Access Control		Access the ICS network Energy 20%				
		Steal or vandalize cyber assets				
		Add rogue devices to capture and retransmit network traffic				
Account Management	5	Compromised unsecured password communications				
Account Management	5	Password compromise could allow trusted unauthorized access to systems				
Loget Eupstionality	6	Increased vectors for malicious party access to critical systems				
Least Functionality	0	Rogue internal access established				

WHO ARE THE

ATTACKERS?

State Actors

BlackEnergy, CrashOverride

EXAMPLES OF INDUSTRY ATTACKS OVER THE PAST YEARS

Insiders

Maroochy County Sewage

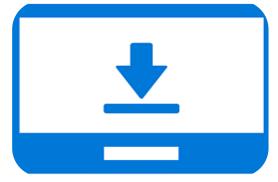
Teenagers

Lodz Tram

Activists

Operation Green Rights

Why Are These Attacks Possible?



Legacy System

Default Configuration

Less/No Updates

Less/No Encryption

Policies & Procedures

Less/No Segmentation

Latency Concerns

Attack Vectors Reaching the OT Network

Removable Media

Email Phishing and Attachments

Remote Technicians

Software Vulnerabilities

Guest Networks Unprotected Sockets

Securing against Attack Vectors

Attack Vector	Check Point solution
Removable Media	Endpoint data protection
Spear Phishing	Sandblast Emulation and Extraction
Ransomware	SandBlast Anti-Ransomware
Remote Technicians	Secured VPN Connectivity and Two Factor Authentication
Software Vulnerabilities	IDS/IPS
Virus's and BOT's	AV and AB Blades
Missing Boundary	Firewall and segmentation

HOW CAN WE SECURELY AND RELIABLY STAY AHEAD?

Best Practices for Securing OT

Secure Both
OT and IT
Environments

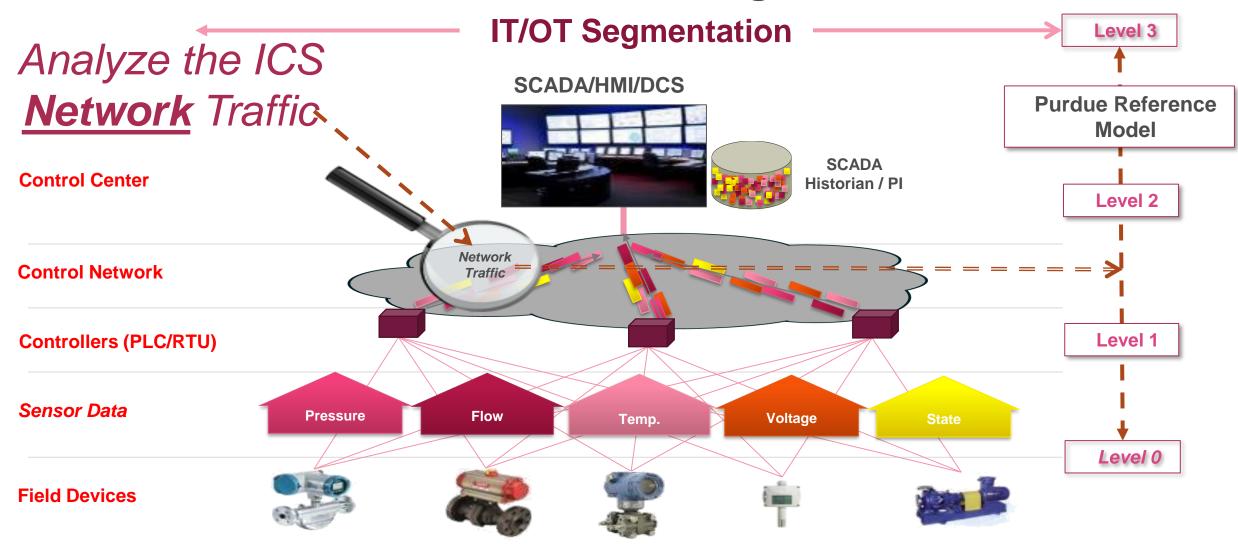
Protect IT with Advanced Threat Prevention Technologies

Clear Segmentation between OT and IT/Internet

Deploy Specialized ICS/SCADA Security Technologies

CHECK POINT'S

Security Solutions for Industrial Control Systems/SCADA

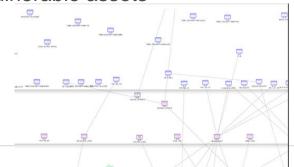

CYBER DEFENSE

Visibility

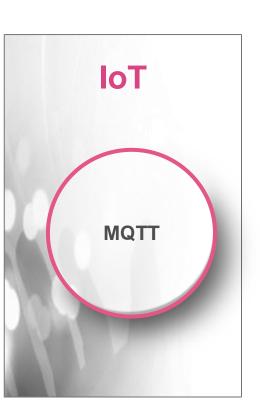
Check Point

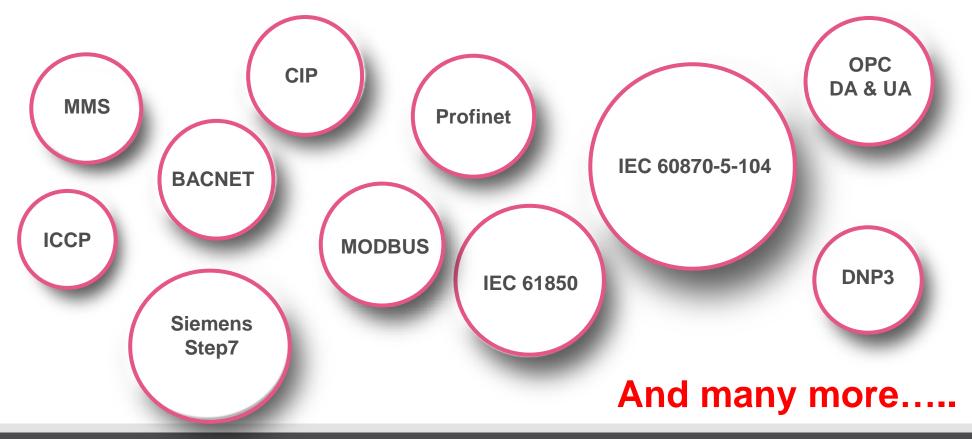
Real Time SCADA/ICS Network monitoring

Enhanced OT Visibility

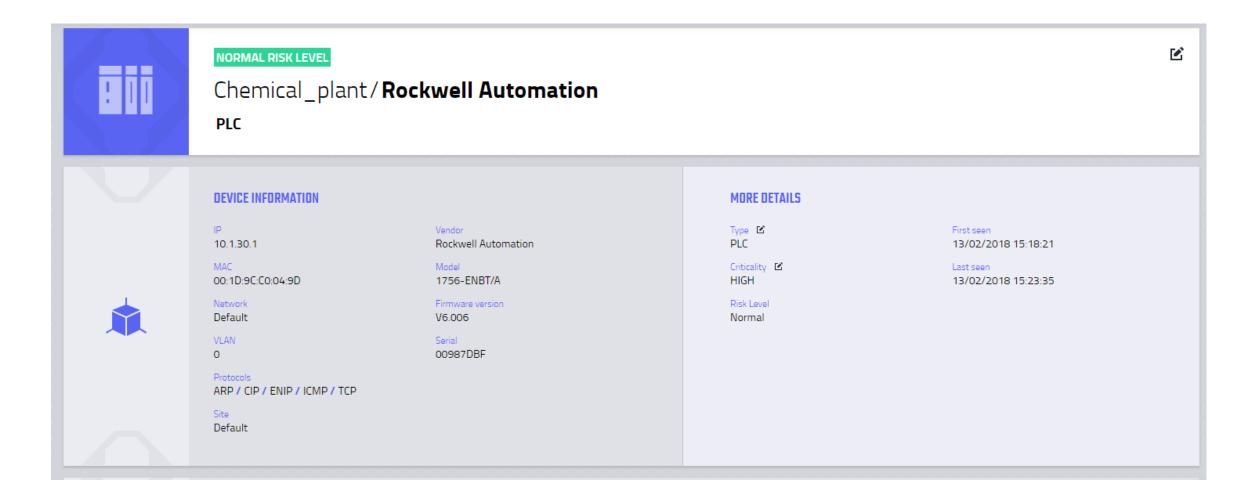

- Protocols & Commands
- Asset connections within the ecosystem
- Open/proprietary protocols

- IP and MAC Address
- Equipment vendor
- Equipment type (PLC, HMI, Engineering Workstation, Switch, etc.)
- Asset model name and Serial #
- Firmware version
- Physical data (rack slots)



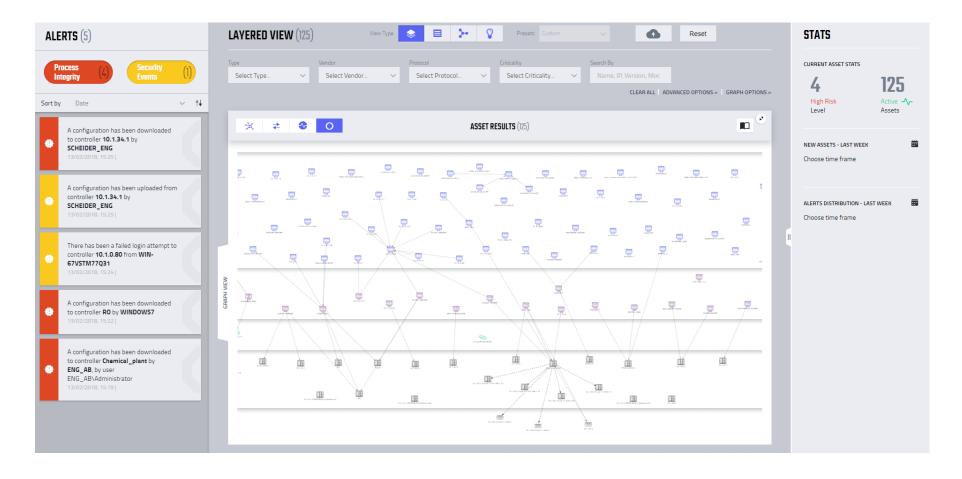

- What assets you have on the network?
- How assets are communicating and who is accessing them?
- Uncover configuration issues and vulnerable assets

Visibility by SCADA Protocols and Commands


Over 1000 SCADA and IoT commands in Check Point Application Control

Updated list: appwiki.checkpoint.com

Asset information


Detailed asset information – Type, Vendor, Firmware and more

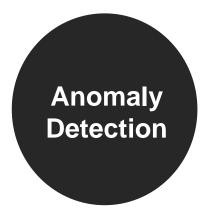
Assets View – by layered map

Asset layered view according to Perdue model, with variety of view options like neighbors assets, communication direction, ARP baseline and hide assets with no communication

CHECK POINT'S

Security Solutions for Industrial Control Systems/SCADA

CYBER DEFENSE



Enforcement

- Learning phase network traffic and logging
- Manual setting of SCADA commands baseline
- Specific Command policies
- Specific Values policies
- Time of Day and traffic patterns policies

- Learning phase Automatically Discover Assets and communication
- Anomaly-Based Behavior Analysis
- Generate High-Fidelity Baseline Model
- Generate security and process threats

Combined Enforcement of Pre-Defined + Anomaly-Based analysis

Setting the Baseline

Granular level logging of SCADA traffic –

Detailed forensics for incident investigations

ANALYZED
by
Check Point
SMARTLOG &
SMARTEVENT

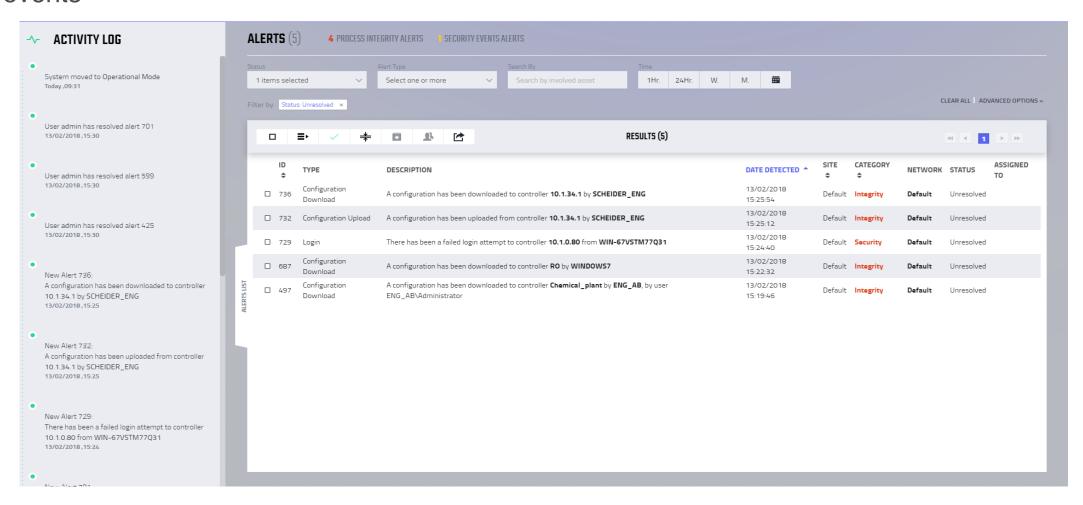
DETAILED

Time		В	Α	T	Origin	Application	Transa	Fu	Function Description	Source	Desti	Matc.
Today	10:45:35	50	0	=	gw-71ec22	ModbusAll	33394	3	Read Holding Registers	HMI-1	PLC-1	SCADA P
Today	10:45:53	88	0		gw-71ec22	ModbusAll	33490	4	Read Input Registers - Response	HMI-1	PLC-1	SCADA Pro
Today	10:45:53	00	0		gw-71ec22	ModbusAll	33490	4	Read Input Registers	HMI-1	PLC-1	SCADA Pro
Today	10:45:53	00	0	=	gw-71ec22	ModbusAll	33489	3	Read Holding Registers - Response	HMI-1	PLC-1	SCADA Pro
Today	10:45:53	80	0		gw-71ec22	ModbusAll	33489	3	Read Holding Registers	HMI-1	PLC-1	SCADA Pro
Today	10:45:53	00	0		gw-71ec22	ModbusAll	33488	3	Read Holding Registers - Response	HMI-1	PLC-1	SCADA Pro
Today	10:45:53	80	0	=	gw-71ec22	ModbusAll	33488	3	Read Holding Registers	HMI-1	PLC-1	SCADA Pro
Today	10:45:53	85	0	⊞	gw-71ec22	ModbusAll	33487	3	Read Holding Registers - Response	HMI-1	PLC-1	SCADA Pro
Today	10:45:53	00	0		gw-71ec22	ModbusAll	33487	3	Read Holding Registers	HMI-1	PLC-1	SCADA Pr
Today	10:45:53	00	0		gw-71ec22	ModbusAll	33486	3	Read Holding Registers - Response	HMI-1	PLC-1	SCADA Pr
Today	10:45:53	80	0	∄	gw-71ec22	ModbusAll	33486	3	Read Holding Registers	HMI-1	PLC-1	SCADA Pr
Today	10:45:53	20	0		gw-71ec22	ModbusAll	33485	3	Read Holding Registers - Response	HMI-1	PLC-1	SCADA Pr
Today	10:45:53	00	0		gw-71ec22	ModbusAll	33485	3	Read Holding Registers	HMI-1	PLC-1	SCADA Pr
Today	10:45:51	80	0	=	gw-71ec22	ModbusAll	33484	4	Read Input Registers - Response	HMI-1	PLC-1	SCADA Pr
Today	10:45:51	00	0		gw-71ec22	ModbusAll	33484	4	Read Input Registers	HMI-1	PLC-1	SCADA Pr
Today	10:45:51	200	0	1	gw-71ec22	ModbusAll	33483	3	Read Holding Registers - Response	HMI-1	PLC-1	SCADA Pr
Today	10:45:51	50	0		gw-71ec22	ModbusAll	33483	3	Read Holding Registers	HMI-1	PLC-1	SCADA Pr
Today	10:45:51	90	0		gw-71ec22	ModbusAll	33482	3	Read Holding Registers - Response	HMI-1	PLC-1	SCADA Pr
Today	10:45:51	89	0	⊞	gw-71ec22	ModbusAll	33482	3	Read Holding Registers	HMI-1	PLC-1	SCADA Pr
Today	10:45:51	00	0		gw-71ec22	ModbusAll	33481	3	Read Holding Registers - Response	HMI-1	PLC-1	SCADA Pr
Today	10:45:51	90	0	1	gw-71ec22	ModbusAll	33481	3	Read Holding Registers	HMI-1	PLC-1	SCADA Pr
Today	10:45:51	RP	0	=	gw-71ec22	ModbusAll	33480	3	Read Holding Registers - Response	HMI-1	PLC-1	SCADA Pr

GROUPED

T Count	▼ Source	▼ Destination	▼ Unit ID	Function Description
± 500	HMI (10.1.1.5)	PLC (20.1.1.5)	1	Read Holding Registers
± 100	HMI (10.1.1.5)	PLC (20.1.1.5)	1	Read Input Registers
1	HMI (10.1.1.5)	PLC (20.1.1.5)	1	Write Single Register

Manual setting of SCADA commands baseline


No.	Hits	Name	Source	Destination	Applications/Sites	Action	Track
1	0	baseline policy	묘 HMI 묘 SCADA_Srv	묘 PLC 묘 PLC_1 묘 PLC_4	 Modbus Protocol - read input register Modbus Protocol - read-write multiple registers Modbus Protocol - write multiple registers Modbus Protocol - write single register 	4 Allow	≜ Extended Log

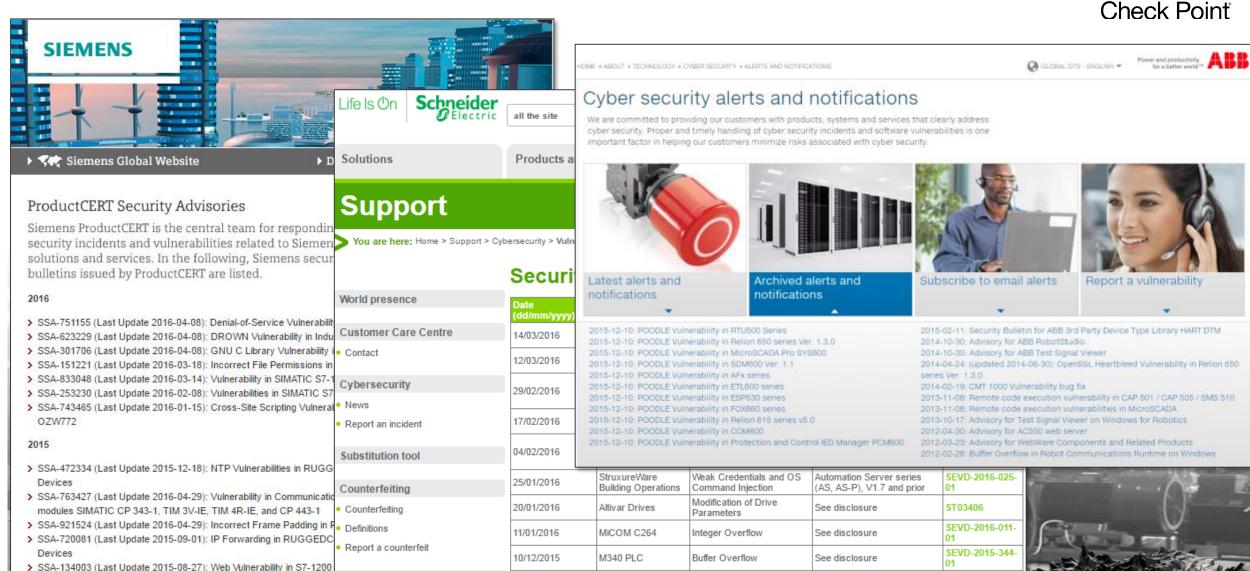
- Learning phase logging of network traffic
- Setting SCADA commands baseline
- Specific Command policies
- Passive (Alert) or optional Active (Block) policy

Alerts by Behavior Analysis

Alerts window with filtering capabilities and Alerts tree according to Process integrity and Security events

CHECK POINT'S

Security Solutions for Industrial Control Systems/SCADA


CYBER DEFENSE

Legacy Systems Are Often Unpatched

Idea Submission

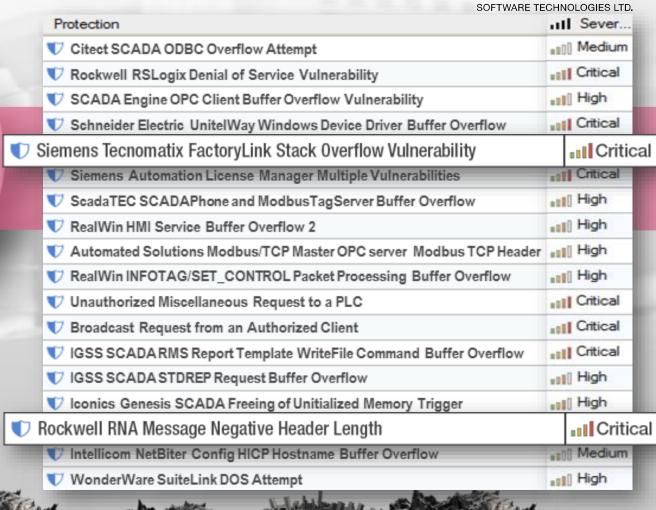
ProClima SW

Remote Code Execution

25/11/2015

ProClima, all versions prior to SEVD-2015-329-

Virtual patching Over 300 dedicated IDS/IPS signatures



Stops exploits of known vulnerabilities and detects anomalous traffic

PROTECTED by Check Point IPS

NSS Labs Highest Rating

CHECK POINT'S

Security Solutions for Industrial Control Systems/SCADA

CYBER DEFENSE

Check Point 1200R

Check Point's SOFTWARE TECHNOLOGIES LTD.

New Purpose-Built Ruggedized Security Gateway Appliance

- Fully featured Check Point security gateway
- 6x1GbE ports and firewall throughput of 2Gbps
- Compliant to the most rigid regulations:
 IEC 61850-3 and IEEE 1613
- Compact fan-less design with no moving parts; temperature range from -40°C to 75°C
- Can be used in In-line or Tap (Mirror) modes
- Routing and networking (e.g. BGP, OSPF, IPsec, etc.)

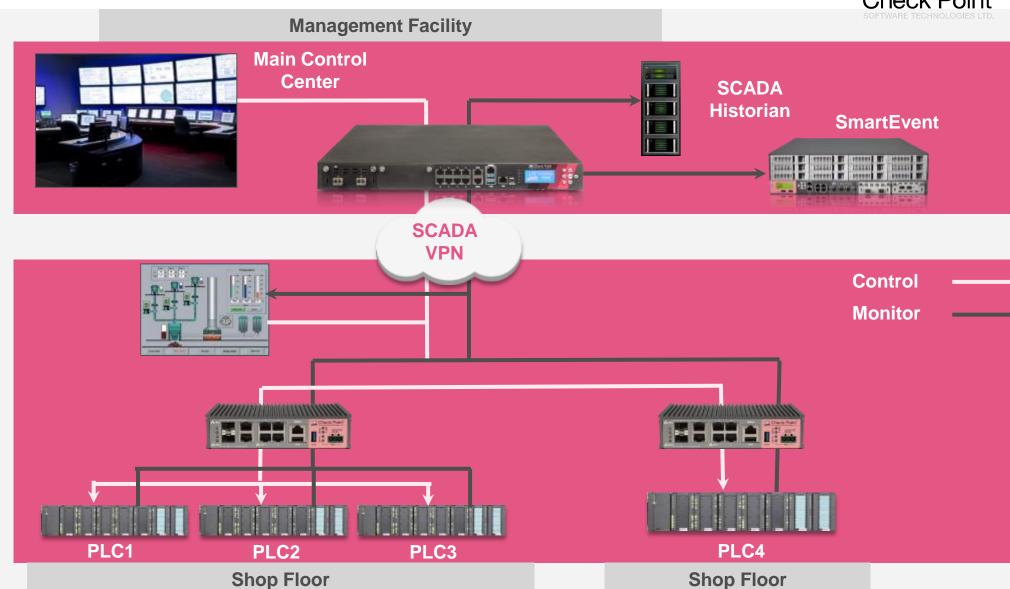
CrashOverride/Industroyer — New ICS attack platform to Electric Grid Operations

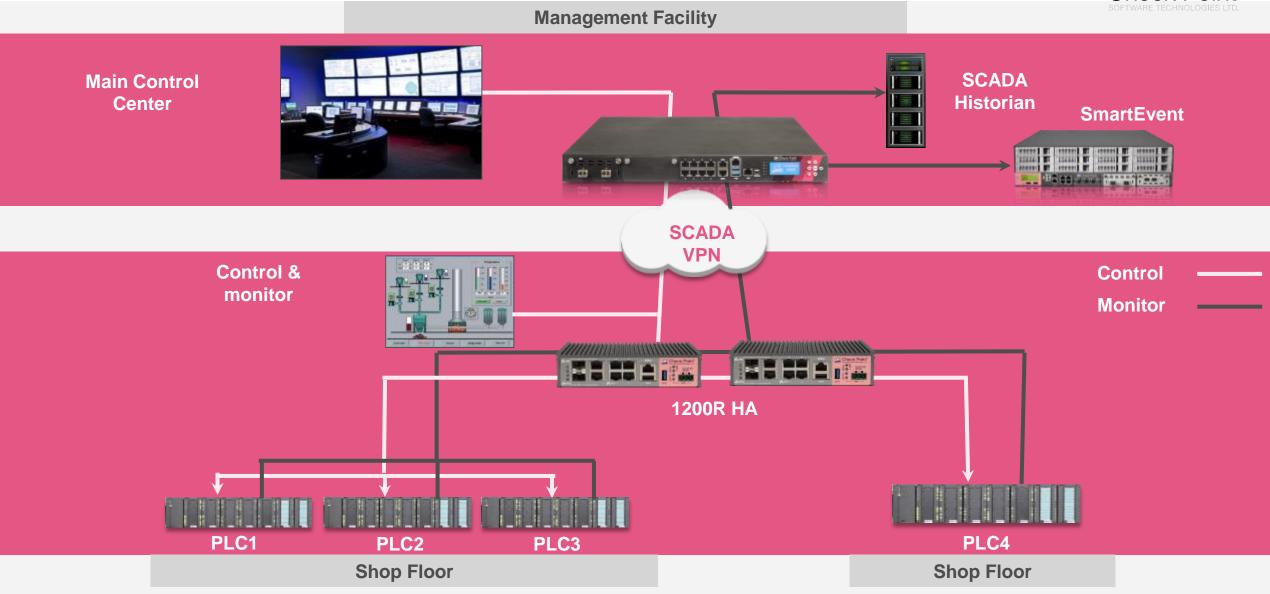
- CrashOverride (called Industroyer as well) malware was the malware employed in the December 17th, 2016 cyber-attack on the Kiev, Ukraine transmission substation which resulted in electric grid operations impact. (As reported by <u>ESET</u> and <u>Dragos</u>)
- ICS-CERT reported on June 14, 2017 https://www.us-cert.gov/ncas/alerts/TA17-163A
 - The tactics, techniques, and procedures (TTPs) described as part of the CrashOverride malware could be modified to target U.S. critical information networks and systems.
- CrashOverride malware is an extensible platform that could be used to target critical infrastructure sectors, specifically using IEC104 and IEC61850 protocols.
 - The malware issues valid commands directly to RTU's.
 - Using Check Point protocols visibility and baselining would detect and alert on None-Baseline protocols and commands
- Could exploit Siemens SIPROTEC relay denial-of-service (DoS) vulnerability, leading to a shutdown of the relay.
 - Using CVE-2015-5374 to Hamper Protective Relays
 - Check Point published on June 20th an IPS signature for virtual patching protection of the DoS vulnerability

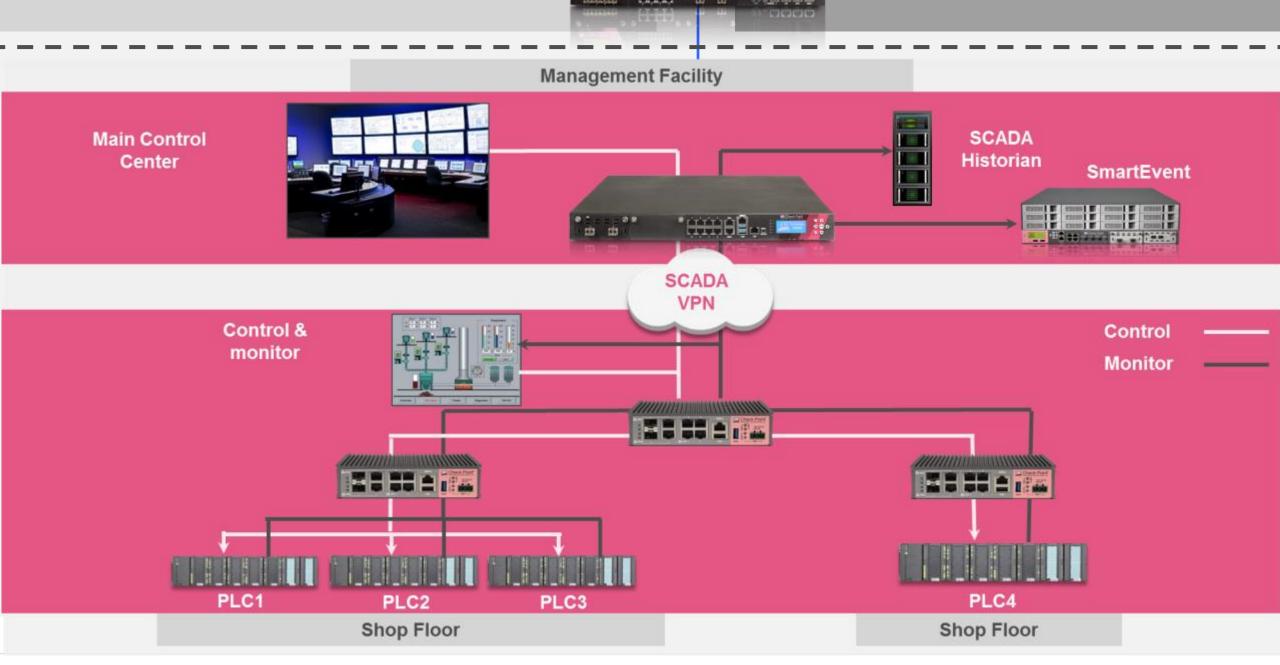
CASE STUDIES

OT Security Blueprint – Micro Segmentation

SCHAEFFLER

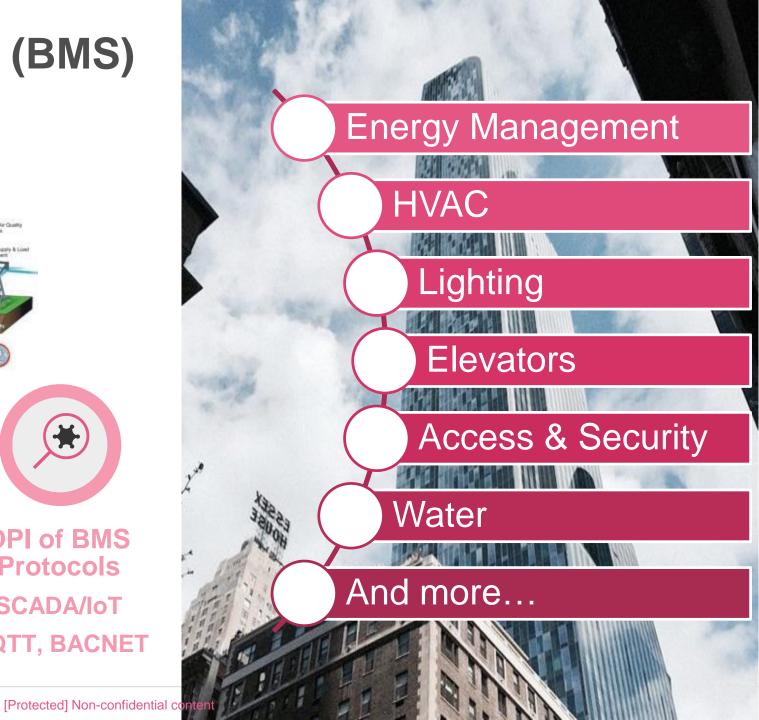

·faurecia



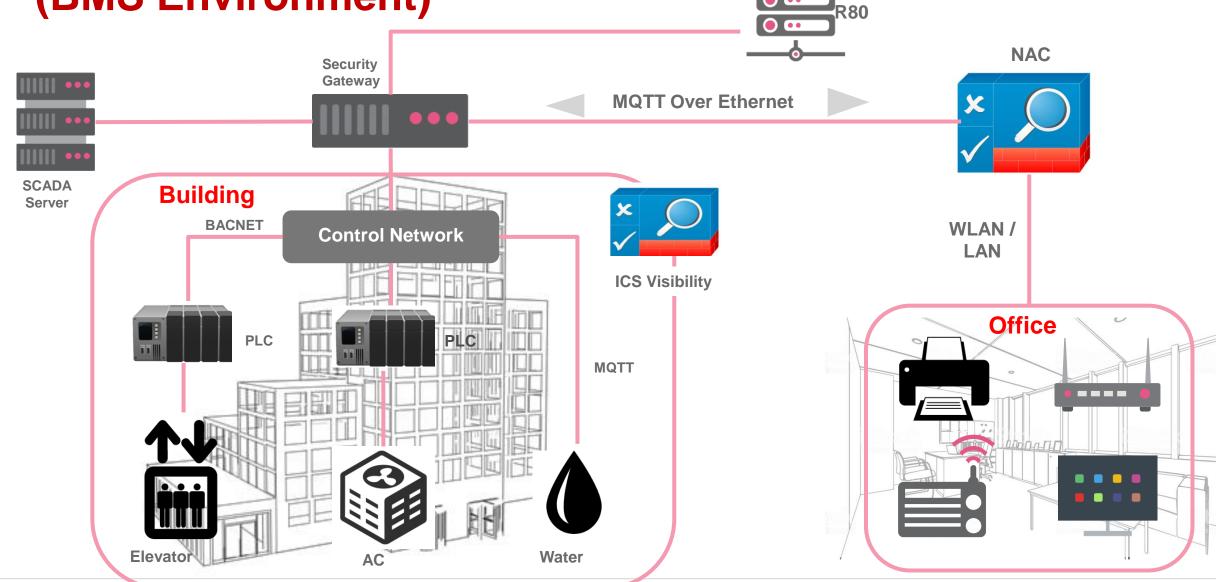


OT Security Blueprint – High Availability

The Corporate Building (BMS)


Perimeter **Segmentation**

Functional Zone Segmentation



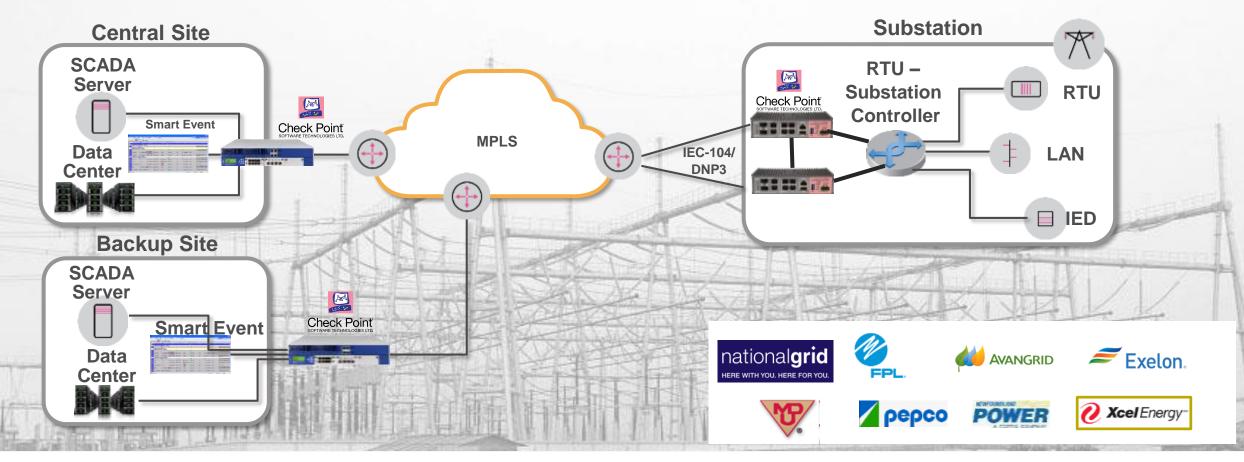
DPI of BMS Protocols SCADA/IoT **MQTT, BACNET**

ICS & IoT Convergence (BMS Environment)

Remote Maintenance for Elevator or HVAC (and more)

VPN Connection

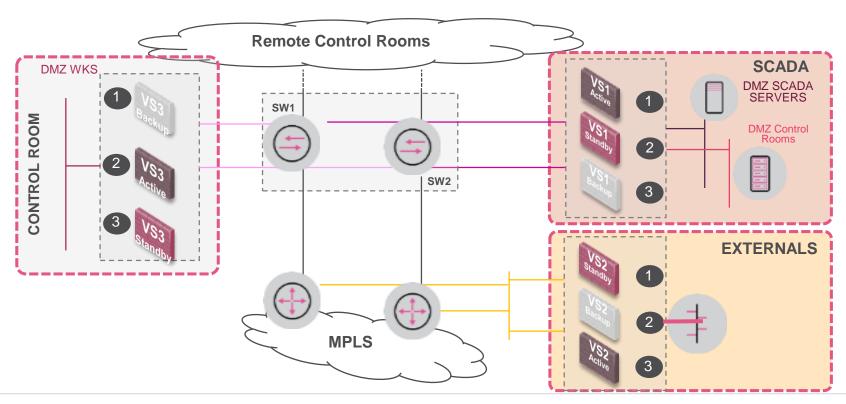
Protocol? **Building** Security Gateway PLC **Elevators (or AC)**



- Secured connectivity (VPN)
- Protocol Visibility
- Command provisioning
- Access Control
- Remote Access VPN Client

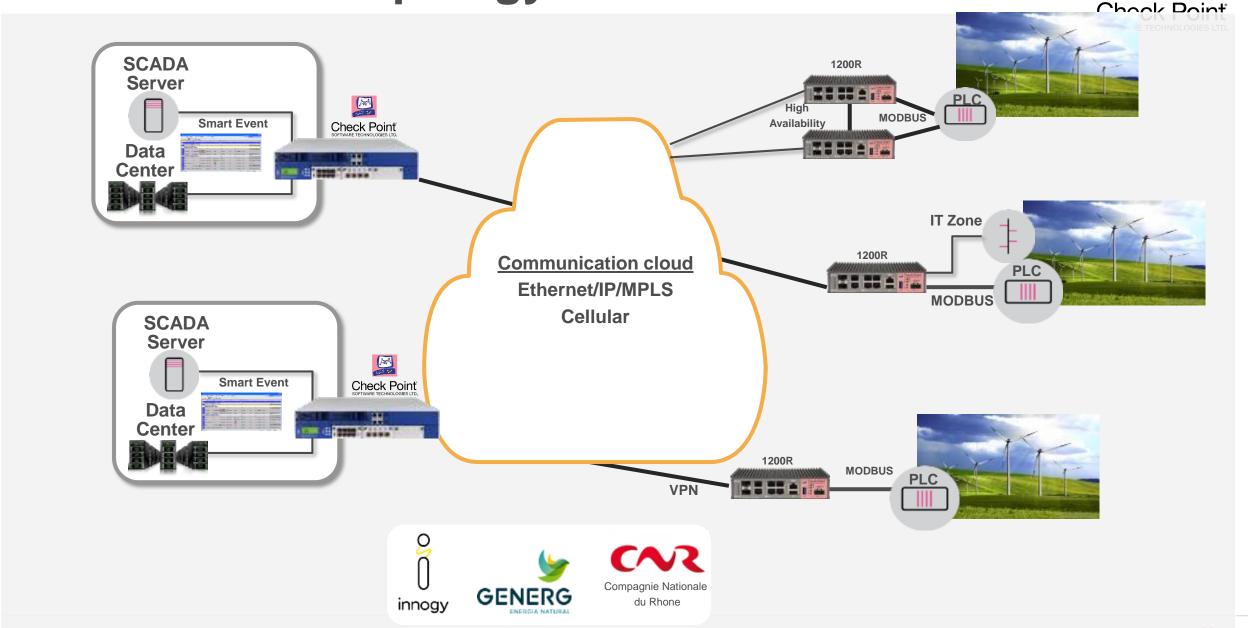
Power Utilities — Substation Security

- Typical power utility security deployment in substations
- Single or cluster solution for combined OT and IT traffic
- SCADA security

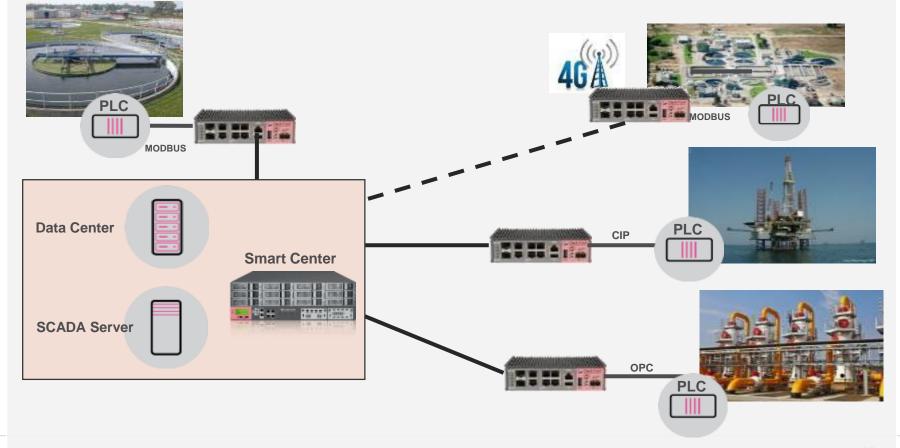


Securing a Transmission System Operator (TSO) Control Systems

Reasons to Choose Check Point


- Simple to manage
- Virtual Machine deployment
- Ability to granularly inspect SCADA protocols
- Each Data center is designed to control the entire national grid in case of failure of all the others
- Fully redundant topopolgy by 3 Firewalls per Data Center

Wind Farms Topology



Waste Water Treatment Network

Applicable in Oil and Gas (Off/On-Shore)

- Security Motivation New regulation for Critical Infrastructure
- Challenge and CHKP Advantage Managing thousands of remote sites

UNIFIED IT and OT MANAGEMENT

FOR BEST ROI AND OPTIMAL PROTECTION

Unified Policy

Everywhere Monitoring

Management integration
With Leading SIEM systems:
Q-Radar, ARCSight, Splunk
And more like Predix and
others

Dedicated Compliance and Regulation Monitoring

NERC CIP (v.5) Regulation Requirement CIP-007-5: Req. 3.1

Regulatory Requirements Details

· Description:

Deploy method(s) to deter, detect, or prevent malicious code. | Taken from Requirement 7: Cyber Security - System Security Management]

Relevant Security Best Practices: 32 out of 39 items are secure

ID	Name	Blade	Status \times
AB106	Check the frequency of scheduled Malware Updates in the Anti-Bot blade	🚱 Anti-Bot	Secure
AB105	Check that the Malware Database is automatically updated	🚱 Anti-Bot	Secure
AV115	Check the frequency of the Anti-Virus database updates	🚱 Anti-Virus	Secure
AV114	Check that the Anti-Virus database is automatically updated	🚱 Anti-Virus	Secure
AV113	Check the frequency of scheduled Malware Updates in the Anti-Bot blade	🚱 Anti-Virus	Secure

SCADA SPECIFIC COMPLIANCE CHECKS

REPORTED by **Check Point COMPLIANCE BLADE**

Real-time assessment of compliance with major regulations

Industrial Security Proces

Visibility - Independently log all SCADA activity:

Network, Protocols, Commands, Values

Define Baseline and Policies

Set Rules based on Known / Unknown / Not Allowed or Anomaly Based Behavior Analysis

Detection - Identify Deviations and Attacks / Anomaly Detection

Based on the defined rules, time of day, attack patterns

Enforcement – Passive (Alert) / Active (Prevent)

Based on configuration and/or topology – In-line or Tap

Check Point Offering-End to End Security suite for Critical Infrastructure IT and OT networks

Most extensive security support of ICS/SCADA protocols

Full OT to IT security segmentation

Large Scale Management – Market "Gold Standard" (Gartner)

Check Point offers complete security suite from Mobile, End-Point to the Cloud – including Private cloud for separation of IT from OT

THANK YOU

